145 research outputs found

    A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects

    Full text link
    Tracking humans that are interacting with the other subjects or environment remains unsolved in visual tracking, because the visibility of the human of interests in videos is unknown and might vary over time. In particular, it is still difficult for state-of-the-art human trackers to recover complete human trajectories in crowded scenes with frequent human interactions. In this work, we consider the visibility status of a subject as a fluent variable, whose change is mostly attributed to the subject's interaction with the surrounding, e.g., crossing behind another object, entering a building, or getting into a vehicle, etc. We introduce a Causal And-Or Graph (C-AOG) to represent the causal-effect relations between an object's visibility fluent and its activities, and develop a probabilistic graph model to jointly reason the visibility fluent change (e.g., from visible to invisible) and track humans in videos. We formulate this joint task as an iterative search of a feasible causal graph structure that enables fast search algorithm, e.g., dynamic programming method. We apply the proposed method on challenging video sequences to evaluate its capabilities of estimating visibility fluent changes of subjects and tracking subjects of interests over time. Results with comparisons demonstrate that our method outperforms the alternative trackers and can recover complete trajectories of humans in complicated scenarios with frequent human interactions.Comment: accepted by CVPR 201

    STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning Energy-Based Models

    Full text link
    We propose in this paper, STANLEY, a STochastic gradient ANisotropic LangEvin dYnamics, for sampling high dimensional data. With the growing efficacy and potential of Energy-Based modeling, also known as non-normalized probabilistic modeling, for modeling a generative process of different natures of high dimensional data observations, we present an end-to-end learning algorithm for Energy-Based models (EBM) with the purpose of improving the quality of the resulting sampled data points. While the unknown normalizing constant of EBMs makes the training procedure intractable, resorting to Markov Chain Monte Carlo (MCMC) is in general a viable option. Realizing what MCMC entails for the EBM training, we propose in this paper, a novel high dimensional sampling method, based on an anisotropic stepsize and a gradient-informed covariance matrix, embedded into a discretized Langevin diffusion. We motivate the necessity for an anisotropic update of the negative samples in the Markov Chain by the nonlinearity of the backbone of the EBM, here a Convolutional Neural Network. Our resulting method, namely STANLEY, is an optimization algorithm for training Energy-Based models via our newly introduced MCMC method. We provide a theoretical understanding of our sampling scheme by proving that the sampler leads to a geometrically uniformly ergodic Markov Chain. Several image generation experiments are provided in our paper to show the effectiveness of our method.Comment: arXiv admin note: text overlap with arXiv:1207.5938 by other author

    Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler

    Full text link
    Due to the intractable partition function, training energy-based models (EBMs) by maximum likelihood requires Markov chain Monte Carlo (MCMC) sampling to approximate the gradient of the Kullback-Leibler divergence between data and model distributions. However, it is non-trivial to sample from an EBM because of the difficulty of mixing between modes. In this paper, we propose to learn a variational auto-encoder (VAE) to initialize the finite-step MCMC, such as Langevin dynamics that is derived from the energy function, for efficient amortized sampling of the EBM. With these amortized MCMC samples, the EBM can be trained by maximum likelihood, which follows an "analysis by synthesis" scheme; while the variational auto-encoder learns from these MCMC samples via variational Bayes. We call this joint training algorithm the variational MCMC teaching, in which the VAE chases the EBM toward data distribution. We interpret the learning algorithm as a dynamic alternating projection in the context of information geometry. Our proposed models can generate samples comparable to GANs and EBMs. Additionally, we demonstrate that our models can learn effective probabilistic distribution toward supervised conditional learning experiments
    • …
    corecore